The Infimum in the Metric Mahler Measure

نویسنده

  • CHARLES L. SAMUELS
چکیده

Dubickas and Smyth defined the metric Mahler measure on the multiplicative group of non-zero algebraic numbers. The definition involves taking an infimum over representations of an algebraic number α by other algebraic numbers. We verify their conjecture that the infimum in its definition is always achieved as well as establish its analog for the ultrametric Mahler measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norms Extremal with Respect to the Mahler Measure

In this paper, we introduce and study several norms which are constructed in order to satisfy an extremal property with respect to the Mahler measure. These norms are a natural generalization of the metric Mahler measure introduced by Dubickas and Smyth. We show that bounding these norms on a certain subspace implies Lehmer’s conjecture and in at least one case that the converse is true as well...

متن کامل

On the Non-archimedean Metric Mahler Measure

Recently, Dubickas and Smyth constructed and examined the metric Mahler measure and the metric näıve height on the multiplicative group of algebraic numbers. We give a non-Archimedean version of the metric Mahler measure, denoted M∞, and prove that M∞(α) = 1 if and only if α is a root of unity. We further show that M∞ defines a projective height on Q × /Tor(Q) as a vector space over Q. Finally,...

متن کامل

Orthogonal Decomposition of the Space of Algebraic Numbers and Lehmer’s Problem

Building on work of Dubickas and Smyth regarding the metric Mahler measure and the authors regarding extremal norms associated to the Mahler measure, the authors introduce a new set of norms associated to the Mahler measure of algebraic numbers which allow for an equivalent reformulation of problems like the Lehmer problem and the Schinzel-Zassenhaus conjecture on a single spectrum. We present ...

متن کامل

Hausdorff measure

Here, instead of taking a σ-algebra as given and then defining a measure on this σ-algebra (namely, on the measurable sets), we take an outer measure as given and then define measurable sets using this outer measure. Carathéodory’s theorem states that the collection M of ν-measurable sets is a σ-algebra and that the restriction of ν to M is a complete measure. Suppose that (X, ρ) is a metric sp...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009